Parameters | (integer) (real) (real) |
---|---|
Support | |
PMF | |
CDF | |
Mean | |
Mode |
In probability theory and statistics, the Zipf–Mandelbrot law is a discrete probability distribution. Also known as the Pareto-Zipf law, it is a power-law distribution on ranked data, named after the linguist George Kingsley Zipf who suggested a simpler distribution called Zipf's law, and the mathematician Benoît Mandelbrot, who subsequently generalized it.
The probability mass function is given by:
where is given by:
which may be thought of as a generalization of a harmonic number. In the formula, k is the rank of the data, and q and s are parameters of the distribution. In the limit as approaches infinity, this becomes the Hurwitz zeta function . For finite and the Zipf–Mandelbrot law becomes Zipf's law. For infinite and it becomes a Zeta distribution.
Contents |
The distribution of words ranked by their frequency in a random text corpus is generally a power-law distribution, known as Zipf's law.
If one plots the frequency rank of words contained in a large corpus of text data versus the number of occurrences or actual frequencies, one obtains a power-law distribution, with exponent close to one (but see Gelbukh & Sidorov, 2001).
In ecological field studies, the relative abundance distribution (i.e. the graph of the number of species observed as a function of their abundance) is often found to conform to a Zipf–Mandelbrot law.[1]
Within music, many metrics of measuring "pleasing" music conform to Zipf–Mandlebrot distributions.[2]